Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Sci Rep ; 13(1): 1969, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2239821

ABSTRACT

The natural glycopeptide antibiotic teicoplanin is used for the treatment of serious Gram-positive related bacterial infections and can be administered intravenously, intramuscularly, topically (ocular infections), or orally. It has also been considered for targeting viral infection by SARS-CoV-2. The hydrodynamic properties of teicoplanin A2 (M1 = 1880 g/mol) were examined in phosphate chloride buffer (pH 6.8, I = 0.10 M) using sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge together with capillary (rolling ball) viscometry. In the concentration range, 0-10 mg/mL teicoplanin A2 was found to self-associate plateauing > 1 mg/mL to give a molar mass of (35,400 ± 1000) g/mol corresponding to ~ (19 ± 1) mers, with a sedimentation coefficient s20, w = ~ 4.65 S. The intrinsic viscosity [[Formula: see text]] was found to be (3.2 ± 0.1) mL/g: both this, the value for s20,w and the hydrodynamic radius from dynamic light scattering are consistent with a globular macromolecular assembly, with a swelling ratio through dynamic hydration processes of ~ 2.


Subject(s)
COVID-19 , Teicoplanin , Humans , Hydrodynamics , SARS-CoV-2 , Anti-Bacterial Agents , Glycopeptides
2.
Indoor Air ; 32(10): e13125, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2088233

ABSTRACT

Contaminant transport and flow distribution are very important during an elevator ride, as the reduced social distancing may increase the infection rate of airborne diseases such as COVID-19. Studying the airflow and contaminant concentration in an elevator is not straightforward because the flow pattern inside an elevator changes dramatically with passenger movement and frequent door opening. Since very little experimental data were available for elevators, this investigation validated the use of computational fluid dynamics (CFD) based on the RNG k- ∈ $$ \in $$ turbulence model to predict airflow and contaminant transport in a scaled, empty airliner cabin with a moving passenger. The movement of the passenger in the cabin created a dynamic airflow and transient contaminant dispersion that were similar to those in an elevator. The computed results agreed reasonably well with the experimental data for the cabin. The validated CFD program was then used to calculate the distributions of air velocity, air temperature, and particle concentration during an elevator ride with an index patient. The CFD results showed that the airflow pattern in the elevator was very complex due to the downward air supply from the ceiling and upward thermal plumes generated by passengers. This investigation studied different respiratory activities of the index patient, that is, breathing only, breathing, and coughing with and without a mask, and talking. The results indicated that the risk of infection was generally low because of the short duration of the elevator ride. If the index patient talked in the elevator, two passengers in the closest proximity to distance would be infected.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Elevators and Escalators , Aircraft , Hydrodynamics
3.
Int J Environ Res Public Health ; 19(16)2022 08 11.
Article in English | MEDLINE | ID: covidwho-1987754

ABSTRACT

Awareness of indoor air quality (IAQ) in crowded places such as schools and offices has increased since 2020 due to the COVID-19 pandemic. In addition, countries' shifting away from containment and towards living with COVID-19 is expected to increase demand for risk mitigation via air-purification devices. In this work, we use Computational Fluid Dynamics (CFD) analysis to investigate the impact of adding an air-purification technology on airflow in an enclosed space. We model a Polyester Filter and UV light (PFUV) dehumidifier in an office with two occupants: one infected with an airborne infectious disease, such as COVID-19; and the other uninfected. We compare three cases where the infected occupant coughs: with no device, and with the device at two different orientations. We construct a CFD model using ANSYS® 2021 Fluent and the Discrete Phase Model (DPM) for the particle treatment. Thermal comfort is assessed using the Testo 400 IAQ and comfort kit. We find that both the device operation and the placement alter the airflow contours, significantly reducing the potential for the uninfected occupant to inhale the vapour expelled by the infected occupant, potentially impacting the likelihood of disease transmission. The device improved thermal comfort measured by Predicted Mean Vote (PMV), Predicted Percentage Dissatisfied (PPD).


Subject(s)
Air Pollution, Indoor , COVID-19 , Cough , Humans , Hydrodynamics , Pandemics
4.
Math Biosci Eng ; 19(8): 8334-8360, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1911809

ABSTRACT

In this paper, a new mathematical model based on partial differential equations is proposed to study the spatial spread of infectious diseases. The model incorporates fluid dynamics theory and represents the epidemic spread as a fluid motion generated through the interaction between the susceptible and infected hosts. At the macroscopic level, the spread of the infection is modeled as an inviscid flow described by the Euler equation. Nontrivial numerical methods from computational fluid dynamics (CFD) are applied to investigate the model. In particular, a fifth-order weighted essentially non-oscillatory (WENO) scheme is employed for the spatial discretization. As an application, this mathematical and computational framework is used in a simulation study for the COVID-19 outbreak in Wuhan, China. The simulation results match the reported data for the cumulative cases with high accuracy and generate new insight into the complex spatial dynamics of COVID-19.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Computer Simulation , Humans , Hydrodynamics , Models, Theoretical
5.
Sci Rep ; 12(1): 11080, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908291

ABSTRACT

Many viruses, such as SARS-CoV-2 or Influenza, possess envelopes decorated with surface proteins (a.k.a. spikes). Depending on the virus type, a large variability is present in the surface-proteins number, morphology and reactivity, which remains generally unexplained. Since viruses' transmissibility depends on features beyond their genetic sequence, new tools are required to discern the effects of spikes functionality, interaction, and morphology. Here, we postulate the relevance of hydrodynamic interactions in the viral infectivity of enveloped viruses and propose micro-rheological characterization as a platform for virus differentiation. To understand how the spikes affect virion mobility and infectivity, we investigate the diffusivity of spike-decorated structures using mesoscopic-hydrodynamic simulations. Furthermore, we explored the interplay between affinity and passive viral transport. Our results revealed that the diffusional mechanism of SARS-CoV-2 is strongly influenced by the size and distribution of its spikes. We propose and validate a universal mechanism to explain the link between optimal virion structure and maximal infectivity for many virus families.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydrodynamics , Spike Glycoprotein, Coronavirus/metabolism
6.
Comput Methods Programs Biomed ; 223: 106977, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1906910

ABSTRACT

BACKGROUND AND OBJECTIVE: Additive manufacturing of nasopharyngeal (NP) swabs using 3D printing technology presents a viable alternative to address the immediate shortage problem of standard flock-headed swabs for rapid COVID-19 testing. Recently, several geometrical designs have been proposed for 3D printed NP swabs and their clinical trials are already underway. During clinical testing of the NP swabs, one of the key criteria to compare the efficacy of 3D printed swabs with traditional swabs is the collection efficiency. In this study, we report a numerical framework to investigate the collection efficiency of swabs utilizing the computational fluid dynamics (CFD) approach. METHODS: Three-dimensional computational domain comprising of NP swab dipped in the liquid has been considered in this study to mimic the dip test procedure. The volume of fluid (VOF) method has been employed to track the liquid-air interface as the NP swab is pulled out of the liquid. The governing equations of the multiphase model have been solved utilizing finite-volume-based ANSYS Fluent software by imposing appropriate boundary conditions. Taguchi's based design of experiment analysis has also been conducted to evaluate the influence of geometric design parameters on the collection efficiency of NP swabs. The developed model has been validated by comparing the numerically predicted collection efficiency of different 3D printed NP swabs with the experimental findings. RESULTS: Numerical predictions of the CFD model are in good agreement with the experimental results. It has been found that there prevails huge variability in the collection efficiency of the 3D printed designs of NP swabs available in the literature, ranging from 2 µl to 120 µl. Furthermore, even the smallest alteration in the geometric design parameter of the 3D printed NP swab results in significant changes in the amount of fluid captured. CONCLUSIONS: The proposed framework would assist in quantifying the collection efficiency of the 3D printed designs of NP swabs, rapidly and at a low cost. Moreover, we demonstrate that the developed framework can be extended to optimize the designs of 3D printed swabs to drastically improve the performances of the existing designs and achieve comparable efficacy to that of conventionally manufactured swabs.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Hydrodynamics , Nasopharynx , Printing, Three-Dimensional
7.
Indoor Air ; 32(3): e13012, 2022 03.
Article in English | MEDLINE | ID: covidwho-1752577

ABSTRACT

In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment.


Subject(s)
COVID-19 , Automobiles , COVID-19/etiology , Computer Simulation , Humans , Hydrodynamics , SARS-CoV-2
8.
Sci Total Environ ; 826: 154143, 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1706852

ABSTRACT

This work describes a modelling approach to SARS-CoV-2 dispersion based on experiments. The main goal is the development of an application integrated in Ansys Fluent to enable computational fluid dynamics (CFD) users to set up, in a relatively short time, complex simulations of virion-laden droplet dispersion for calculating the probability of SARS-CoV-2 infection in real life scenarios. The software application, referred to as TU Delft COVID-app, includes the modelling of human expiratory activities, unsteady and turbulent convection, droplet evaporation and thermal coupling. Data describing human expiratory activities have been obtained from selected studies involving measurements of the expelled droplets and the air flow during coughing, sneezing and breathing. Particle Image Velocimetry (PIV) measurements of the transient air flow expelled by a person while reciting a speech have been conducted with and without a surgical mask. The instantaneous velocity fields from PIV are used to determine the velocity flow rates used in the numerical simulations, while the average velocity fields are used for validation. Furthermore, the effect of surgical masks and N95 respirators on particle filtration and the probability of SARS-CoV-2 infection from a dose-response model have also been implemented in the application. Finally, the work includes a case-study of SARS-CoV-2 infection risk analysis during a conversation across a dining/meeting table that demonstrates the capability of the newly developed application.


Subject(s)
COVID-19 , Mobile Applications , Humans , Hydrodynamics , Masks , Risk Assessment , SARS-CoV-2
9.
Transl Vis Sci Technol ; 11(2): 2, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1677467

ABSTRACT

PURPOSE: The purpose of this study was to investigate the mechanism of potential droplet formation in response to air puff deformation with two noncontact tonometers (NCTs). METHODS: Twenty healthy volunteers were examined using two NCTs, Ocular Response Analyzer and Corvis ST, and two contact tonometers, iCare and Tono-Pen. High-speed videos of the tear film response were captured with at spatial resolution of 20 microns/pixel at 2400 fps. Droplet size, droplet velocity, distance between air puff impact location, and the tear meniscus-lid margin were characterized. RESULTS: One subject was excluded due to technical issues. Droplets were detected only in tests with instilled eye drop. Videos showed the tear film rolls away from the apex while remaining adherent to the ocular surface due to the tendency of the fluid to remain attached to a solid surface explained by the Coanda effect. Twelve out of 38 videos with an eye drop administration showed droplet formation. Only one resulted in droplets with predominantly forward motion, which had the shortest distance between air puff impact location and lower meniscus. This distance on average was 5.9 ± 1.1 mm. The average droplet size was 500 ± 200 µm. CONCLUSIONS: Results indicate no droplet formation under typical clinical setting. Hence, standard clinical use of NCT tests is not expected to cause droplets. NCT testing with eye drop administration showed droplet formation at the inferior eyelid boundary, which acts as a barrier and interrupts tear flow. TRANSLATIONAL RELEVANCE: Study of tear film interaction with NCT air puff shows that these tonometers are not expected to cause droplet formation in standard use and that if external drops are required, both eyelids should be held if patients need assistance to maintain open eyes to avoid droplets with predominantly forward motion.


Subject(s)
Hydrodynamics , Lacerations , Humans , Intraocular Pressure , Manometry , Ophthalmic Solutions , Tonometry, Ocular
10.
Med Eng Phys ; 92: 71-79, 2021 06.
Article in English | MEDLINE | ID: covidwho-1452333

ABSTRACT

The comprehension of the fluid flow in the upper airways is of paramount importance when treating patients under clinical conditions that demand mechanical ventilation. Barotrauma and overdistension are related to undesirable pressures and might be responsible for morbidity and mortality. In the current work we use computational fluid dynamics to investigate the pressure field in the upper respiratory airways. We performed a set of simulations varying the volumetric flow rate of mechanical ventilators and we have shown that the pressure profile can be calculated by means of the volumetric flow rate in accordance with a mathematical expression given by Pav=aV˙2, where Pav is the average pressure at selected sections of the upper airways and V˙ is the volumetric flow rate. Numerical findings provide evidence that the constant a varies with the location of the plane in the upper airways. We also show that some particular diameters of endotracheal tubes (ETT) must be used with care for a given range of volumetric flow rates. Overall, we document an important relationship among pressure, volumetric flow rate and selected internal diameters from ETT.


Subject(s)
Intubation, Intratracheal , Ventilators, Mechanical , Humans , Hydrodynamics , Respiration, Artificial , Respiratory System
11.
Interv Neuroradiol ; 26(5): 557-565, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1455862

ABSTRACT

BACKGROUND: The Low-profile Visualized Intraluminal Support device (LVIS) has been successfully used to treat cerebral aneurysm, and the push-pull technique has been used clinically to compact the stent across aneurysm orifice. Our aim was to exhibit the hemodynamic effect of the compacted LVIS stent. METHODS: Two patient-specific aneurysm models were constructed from three-dimensional angiographic images. The uniform LVIS stent, compacted LVIS and Pipeline Embolization Device (PED) with or without coil embolization were virtually deployed into aneurysm models to perform hemodynamic analysis. Intra-aneurysmal flow parameters were calculated to assess hemodynamic differences among different models. RESULTS: The compacted LVIS had the highest metal coverage across the aneurysm orifice (case 1, 46.37%; case 2, 67.01%). However, the PED achieved the highest pore density (case 1, 19.56 pores/mm2; case 2, 18.07 pores/mm2). The compacted LVIS produced a much higher intra-aneurysmal flow reduction than the uniform LVIS. The PED showed a higher intra-aneurysmal flow reduction than the compacted LVIS in case 1, but the results were comparable in case 2. After stent placement, the intra-aneurysmal flow was further reduced as subsequent coil embolization. The compacted LVIS stent with coils produced a similar reduction in intra-aneurysmal flow to that of the PED. CONCLUSIONS: The combined characteristics of stent metal coverage and pore density should be considered when assessing the flow diversion effects of stents. More intra-aneurysmal flow reductions could be introduced by compacted LVIS stent than the uniform one. Compared with PED, compacted LVIS stent may exhibit a flow-diverting effect comparable to that of the PED.


Subject(s)
Embolization, Therapeutic/methods , Intracranial Aneurysm/therapy , Stents , Subarachnoid Hemorrhage/therapy , Angiography, Digital Subtraction , Cerebral Angiography , Computer Simulation , Hemodynamics , Humans , Hydrodynamics , Imaging, Three-Dimensional , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Angiography , Prosthesis Design , Subarachnoid Hemorrhage/diagnostic imaging
12.
Int J Med Sci ; 18(10): 2102-2108, 2021.
Article in English | MEDLINE | ID: covidwho-1389721

ABSTRACT

Introduction: SARS-CoV-2 is a respiratory virus supposed to enter the organism through aerosol or fomite transmission to the nose, eyes and oropharynx. It is responsible for various clinical symptoms, including hyposmia and other neurological ones. Current literature suggests the olfactory mucosa as a port of entry to the CNS, but how the virus reaches the olfactory groove is still unknown. Because the first neurological symptoms of invasion (hyposmia) do not correspond to first signs of infection, the hypothesis of direct contact through airborne droplets during primary infection and therefore during inspiration is not plausible. The aim of this study is to evaluate if a secondary spread to the olfactory groove in a retrograde manner during expiration could be more probable. Methods: Four three-dimensional virtual models were obtained from actual CT scans and used to simulate expiratory droplets. The volume mesh consists of 25 million of cells, the simulated condition is a steady expiration, driving a flow rate of 270 ml/s, for a duration of 0.6 seconds. The droplet diameter is of 5 µm. Results: The analysis of the simulations shows the virus to have a high probability to be deployed in the rhinopharynx, on the tail of medium and upper turbinates. The possibility for droplets to access the olfactory mucosa during the expiratory phase is lower than other nasal areas, but consistent. Discussion: The data obtained from these simulations demonstrates the virus can be deployed in the olfactory groove during expiration. Even if the total amount in a single act is scarce, it must be considered it is repeated tens of thousands of times a day, and the source of contamination continuously acts on a timescale of several days. The present results also imply CNS penetration of SARS-CoV-2 through olfactory mucosa might be considered a complication and, consequently, prevention strategies should be considered in diseased patients.


Subject(s)
Olfactory Mucosa/virology , SARS-CoV-2/pathogenicity , Biomechanical Phenomena , Computer Simulation , Host-Pathogen Interactions/physiology , Humans , Hydrodynamics , Olfactory Mucosa/diagnostic imaging
13.
PLoS One ; 16(5): e0251817, 2021.
Article in English | MEDLINE | ID: covidwho-1388915

ABSTRACT

The transmission of SARS-CoV-2 through contact with contaminated surfaces or objects is an important form of transmissibility. Thus, in this study, we evaluated the performance of a disinfection chamber designed for instantaneous dispersion of the biocidal agent solution, in order to characterize a new device that can be used to protect individuals by reducing the transmissibility of the disease through contaminated surfaces. We proposed the necessary adjustments in the configuration to improve the dispersion on surfaces and the effectiveness of the developed equipment. Computational Fluid Dynamics (CFD) simulations of the present technology with a chamber having six nebulizer nozzles were performed and validated through qualitative and quantitative comparisons, and experimental tests were conducted using the method Water-Sensitive Paper (WSP), with an exposure to the biocidal agent for 10 and 30 s. After evaluation, a new passage procedure for the chamber with six nozzles and a new configuration of the disinfection chamber were proposed. In the chamber with six nozzles, a deficiency was identified in its central region, where the suspended droplet concentration was close to zero. However, with the new passage procedure, there was a significant increase in wettability of the surface. With the proposition of the chamber with 12 nozzles, the suspended droplet concentration in different regions increased, with an average increase of 266%. The experimental results of the new configuration proved that there was an increase in wettability at all times of exposure, and it was more significant for an exposure of 30 s. Additionally, even in different passage procedures, there were no significant differences in the results for an exposure of 10 s, thereby showing the effectiveness of the new configuration or improved spraying and wettability by the biocidal agent, as well as in minimizing the impact caused by human factor in the performance of the disinfection technology.


Subject(s)
COVID-19/epidemiology , Decontamination/methods , Disinfection/methods , SARS-CoV-2/drug effects , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Decontamination/instrumentation , Disinfectants/analysis , Disinfection/instrumentation , Humans , Hydrodynamics , Models, Theoretical , Pandemics , SARS-CoV-2/isolation & purification
14.
Curr Opin Virol ; 50: 103-109, 2021 10.
Article in English | MEDLINE | ID: covidwho-1370468

ABSTRACT

The COVID-19 pandemic has highlighted a need for improved frameworks for drug discovery, repurposing, clinical trial design and therapy optimization and personalization. Mechanistic computational models can play an important role in developing these frameworks. We discuss how mechanistic models, which consider viral entry, replication in target cells, viral spread in the body, immune response, and the complex factors involved in tissue and organ damage and recovery, can clarify the mechanisms of humoral and cellular immune responses to the virus, viral distribution and replication in tissues, the origins of pathogenesis and patient-to-patient heterogeneity in responses. These models are already improving our understanding of the mechanisms of action of antivirals and immune modulators. We discuss how closer collaboration between the experimentalists, clinicians and modelers could result in more predictive models which may guide therapies for viral infections, improving survival and leading to faster and more complete recovery.


Subject(s)
COVID-19 Drug Treatment , Computer Simulation , SARS-CoV-2 , COVID-19/immunology , Humans , Hydrodynamics , Intersectoral Collaboration
15.
Rev Sci Instrum ; 92(7): 074101, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1338585

ABSTRACT

A fluid mechanics model of inhaled air gases, nitrogen (N2) and oxygen (O2) gases, and exhaled gas components (CO2 and water vapor particles) through a facial mask (membrane) to shield the COVID-19 virus is established. The model was developed based on several gas flux contributions that normally take place through membranes. Semiempirical solutions of the mathematical model were predicted for the N95 facial mask accounting on several parameters, such as a range of porosity size (i.e., 1-30 nm), void fraction (i.e., 10-3%-0.3%), and thickness of the membrane (i.e., 10-40 µm) in comparison to the size of the COVID-19 virus. A unitless number (Nr) was introduced for the first time to describe semiempirical solutions of O2, N2, and CO2 gases through the porous membrane. An optimum Nr of expressing the flow of the inhaled air gases, O2 and N2, through the porous membrane was determined (NO2 = NN2 = -4.4) when an N95 facial mask of specifications of a = 20 nm, l = 30 µm, and ε = 30% was used as a personal protection equipment (PPE). The concept of the optimum number Nr can be standardized not only for testing commercially available facial masks as PPEs but also for designing new masks for protecting humans from the COVID-19 virus.


Subject(s)
COVID-19/prevention & control , Masks , SARS-CoV-2 , Biomechanical Phenomena , Carbon Dioxide , Equipment Design , Exhalation , Gases , Humans , Hydrodynamics , Inhalation , Mathematical Concepts , Membranes, Artificial , Models, Theoretical , N95 Respirators , Nitrogen , Oxygen , Personal Protective Equipment , Porosity , Steam
16.
Sci Rep ; 11(1): 15429, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1333985

ABSTRACT

Evidences are escalating on the diverse neurological-disorders and asymptomatic cardiovascular-diseases associated with COVID-19 pandemic due to the Sanal-flow-choking. Herein, we established the proof of the concept of nanoscale Sanal-flow-choking in real-world fluid-flow systems using a closed-form-analytical-model. This mathematical-model is capable of predicting exactly the 3D-boundary-layer-blockage factor of nanoscale diabatic-fluid-flow systems (flow involves the transfer of heat) at the Sanal-flow-choking condition. As the pressure of the diabatic nanofluid and/or non-continuum-flows rises, average-mean-free-path diminishes and thus, the Knudsen-number lowers heading to a zero-slip wall-boundary condition with the compressible-viscous-flow regime in the nanoscale-tubes leading to Sanal-flow-choking due to the sonic-fluid-throat effect. At the Sanal-flow-choking condition the total-to-static pressure ratio (ie., systolic-to-diastolic pressure ratio) is a unique function of the heat-capacity-ratio of the real-world flows. The innovation of the nanoscale Sanal-flow-choking model is established herein through the entropy relation, as it satisfies all the conservation-laws of nature. The physical insight of the boundary-layer-blockage persuaded nanoscale Sanal-flow-choking in diabatic flows presented in this article sheds light on finding solutions to numerous unresolved scientific problems in physical, chemical and biological sciences carried forward over the centuries because the mathematical-model describing the phenomenon of Sanal-flow-choking is a unique scientific-language of the real-world-fluid flows. The 3D-boundary-layer-blockage factors presented herein for various gases are universal-benchmark-data for performing high-fidelity in silico, in vitro and in vivo experiments in nanotubes.


Subject(s)
Fluid Shifts/physiology , Models, Theoretical , Nanotubes/chemistry , Rheology/methods , Algorithms , Biophysical Phenomena , COVID-19/physiopathology , Cardiovascular Physiological Phenomena , Cardiovascular System/physiopathology , Computational Biology/methods , Humans , Hydrodynamics , Physical Phenomena , SARS-CoV-2/isolation & purification
17.
Comput Biol Med ; 136: 104723, 2021 09.
Article in English | MEDLINE | ID: covidwho-1329739

ABSTRACT

BACKGROUND: Nitric oxide (NO) is important in respiratory physiology and airway defense. Although the paranasal sinuses are the major source of nasal NO, transport dynamics between the sinuses and nasal cavities are poorly understood. METHODS: Exhaled nasal NO tracings were measured in two non-asthmatic subjects (one with allergic rhinitis, one without) using NO analyzer connected via face mask. We subsequently performed computational fluid dynamics NO emission simulations based on individual CT scans and compared to the experimental data. RESULTS: Simulated exhaled NO tracings match well with experimental data (r > 0.84, p < 0.01) for both subjects, with measured peaks reaching 319.6 ppb in one subject (allergic-rhinitis), and 196.9 ppb in the other. The CFD simulation accurately captured the peak differences, even though the initial sinus NO concentration for both cases was set to the same 9000 ppb based on literature value. Further, the CFD simulation suggests that ethmoid sinuses contributed the most (>67%, other sinuses combined <33%) to total nasal NO emission in both cases and that diffusion contributes more than convective transport. By turning off diffusion (setting NO diffusivity to ~0), the NO emission peaks for both cases were reduced by >70%. CONCLUSION: Historically, nasal NO emissions were thought to be contributed mostly by the maxillary sinuses (the largest sinuses) and active air movement (convection). Here, we showed that the ethmoid sinuses and diffusive transport dominate the process. These findings may have a substantial impact on our view of nasal NO emission mechanisms and sinus physiopathology in general.


Subject(s)
Nitric Oxide , Paranasal Sinuses , Exhalation , Humans , Hydrodynamics , Maxillary Sinus , Nasal Cavity/diagnostic imaging , Paranasal Sinuses/diagnostic imaging
18.
Biosensors (Basel) ; 11(7)2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1323110

ABSTRACT

Optofluidic flow-through biosensors are being developed for single particle detection, particularly as a tool for pathogen diagnosis. The sensitivity of the biosensor chip depends on design parameters, illumination format (side vs. top), and flow configuration (parabolic, two- and three-dimensional hydrodynamic focused (2DHF and 3DHF)). We study the signal differences between various combinations of these design aspects. Our model is validated against a sample of physical devices. We find that side-illumination with 3DHF produces the strongest and consistent signal, but parabolic flow devices process a sample volume more quickly. Practical matters of optical alignment are also discussed, which may affect design choice.


Subject(s)
Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Hydrodynamics , Microfluidic Analytical Techniques
19.
Annu Rev Biomed Eng ; 23: 547-577, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1307981

ABSTRACT

The host-to-host transmission of respiratory infectious diseases is fundamentally enabled by the interaction of pathogens with a variety of fluids (gas or liquid) that shape pathogen encapsulation and emission, transport and persistence in the environment, and new host invasion and infection. Deciphering the mechanisms and fluid properties that govern and promote these steps of pathogen transmission will enable better risk assessment and infection control strategies, and may reveal previously underappreciated ways in which the pathogens might actually adapt to or manipulate the physical and chemical characteristics of these carrier fluids to benefit their own transmission. In this article, I review our current understanding of the mechanisms shaping the fluid dynamics of respiratory infectious diseases.


Subject(s)
Communicable Diseases/physiopathology , Communicable Diseases/transmission , Hydrodynamics , Respiration Disorders/physiopathology , Aerosols , COVID-19/transmission , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Infectious Disease Medicine/history , Physical Distancing , Respiratory System/physiopathology , Respiratory System/virology , Rheology , SARS-CoV-2 , Saliva , Ventilation
20.
Emerg Med J ; 38(9): 673-678, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1287247

ABSTRACT

AIM: Cardiopulmonary resuscitation (CPR) is an emergency procedure where interpersonal distance cannot be maintained. There are and will always be outbreaks of infection from airborne diseases. Our objective was to assess the potential risk of airborne virus transmission during CPR in open-air conditions. METHODS: We performed advanced high-fidelity three-dimensional modelling and simulations to predict airborne transmission during out-of-hospital hands-only CPR. The computational model considers complex fluid dynamics and heat transfer phenomena such as aerosol evaporation, breakup, coalescence, turbulence, and local interactions between the aerosol and the surrounding fluid. Furthermore, we incorporated the effects of the wind speed/direction, the air temperature and relative humidity on the transport of contaminated saliva particles emitted from a victim during a resuscitation process based on an Airborne Infection Risk (AIR) Index. RESULTS: The results reveal low-risk conditions that include wind direction and high relative humidity and temperature. High-risk situations include wind directed to the rescuer, low humidity and temperature. Combinations of other conditions have an intermediate AIR Index and risk for the rescue team. CONCLUSIONS: The fluid dynamics, simulation-based AIR Index provides a classification of the risk of contagion by victim's aerosol in the case of hands-only CPR considering environmental factors such as wind speed and direction, relative humidity and temperature. Therefore, we recommend that rescuers perform a quick assessment of their airborne infectious risk before starting CPR in the open air and positioning themselves to avoid wind directed to their faces.


Subject(s)
COVID-19/transmission , Cardiopulmonary Resuscitation/adverse effects , Models, Biological , Out-of-Hospital Cardiac Arrest/therapy , SARS-CoV-2/pathogenicity , Aerosols/adverse effects , COVID-19/complications , COVID-19/virology , Cardiopulmonary Resuscitation/standards , Computer Simulation , Guidelines as Topic , Humans , Humidity , Hydrodynamics , Out-of-Hospital Cardiac Arrest/complications , Personal Protective Equipment/standards , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Temperature , Wind
SELECTION OF CITATIONS
SEARCH DETAIL